

Sprinkler and Micro Irrigation Engineering Formulas - U.S. Units

System Capacity Requirements

System Capacity (gpm) = $\frac{453 \text{ AC D}}{\text{I T E}_s}$

AC = Area to be irrigated (acres)

D = Net depth irrigated (in)

I = Irrigation interval (days)

T = Operating time per day (hr)

E_s = Irrigation system efficiency (decimal)

Trees and Vines Daily Requirement

Daily Requirement = $\frac{.623 \, S_t \, S_r \, ET_p}{E_s}$

 S_t = Tree spacing (ft)

 $S_r = Row spacing (ft)$

 ET_p = Crop peak evapotranspiration (in/hr)

E_a = Application efficiency (decimal)

Precipitation Rate

Precipitation Rate (in/hr) = $\frac{96.3 \,\mathrm{Q}}{\mathrm{S}_{p} \,\mathrm{S}_{l}}$

Q = Sprinkler flow (gpm)

 S_p = Sprinkler spacing (ft)

 S_1 = Lateral spacing (ft)

Nozzle Discharge

Discharge (gpm) = $29.82 \sqrt{P} D^2 C_d$

P = Nozzle pressure (psi)

D = Nozzle orifice diameter (in.)

C_d = Nozzle discharge coefficient

 $(tapered \cong .96 to .98)$

Emitter Discharge

Emitter Discharge (gph) = $k p^x$

κ = Emitter flow constant

p = Emitter pressure (psi)

x = Emitter exponent

Emitter Exponent

Emitter Exponent x = $\frac{\log(\frac{Q_1}{Q_2})}{\log(\frac{P_1}{P_2})}$

 P_1 = First emitter test pressure (psi)

Q₁ = Emitter flow at P1 pressure (gph)

 P_2 = Second emitter test pressure (psi)

Q₂ = Emitter flow at P2 pressure (gph)

Pipe Friction Loss (Hazen-Williams)

Pressure Loss (psi) = $4.55 \frac{\left(\frac{Q}{C}\right)^{1.852}}{ID^{4.87}}$ L

Q = Pipe flow (gpm)

C = Roughness coefficient (PVC = 150, Aluminum w/ couplers = 120)

ID = Pipe inside diameter (in.)

L = Pipe length (ft)

<u>Drip Tubing Friction Loss</u> (Blasius)

Pressure Loss (psi) = .000576 $\frac{Q^{1.75}}{ID^{4.75}}L$

Q = Flow in the lateral (gpm)

ID = Lateral inside diameter (in)

L = Length of the lateral (ft)

Emitter Obstruction Loss

Emitter Loss (psi) = .0359 $K_d v^2$

K_d = emitter obstruction factor V = flow velocity in the lateral (fps)

Pipe Velocity

Velocity (fps) =
$$\frac{.4085 \,\mathrm{Q}}{\mathrm{ID}^2}$$

Q = Pipe flow (gpm) ID = Pipe inside diameter (in.)

Brake Horsepower Required

Brake Horsepower =
$$\frac{Q \text{ TDH}}{3960 \text{ E}_{D}}$$

Q = System flow (gpm) TDH = Total Dynamic Head (ft) E_n = Pump efficiency (decimal)

Electrical Horsepower

Electrical Horsepower =
$$\frac{BHP}{E_{m}}$$

BHP = Brake horsepower required E_m = Electrical motor efficiency (decimal)

For further information contact:

Rain Bird Agri-Products Co. 633 W. Foothill Blvd. Glendora, CA 91741-5624 Phone: (800) 435-5624

Fax: (626) 852-7310

Water Hammer Pressure Surge

Surge Pressure (psi) = .01345 c V

Wave veloc. c (fps) =
$$\frac{4660}{\sqrt{1 + \frac{K (SDR - 2)}{E}}}$$

= Surge wave velocity (fps)

= Instantaneous velocity change (fps) = Bulk modulus (300,000 psi for water)

SDR = Standard Dimension Ratio of the

pipe (OD/ wall thickness)

Ε = Modulus of elasticity of the pipe (400,000 psi for PVC)

Conversion Factors

1 psi = 2.31 feet of water column 1 acre-inch = 27,154 gallons 1 cfs = 449 gpm1 acre = 43560 sq. feet 1 cu. foot = 7.48 gal. 1 acre-in / hr = 453 gpm

1 million gal. per day (mgd) = 694.4 gpm 1 horsepower = .746 kilowatts

Rain Bird International, Inc. 145 N. Grand Ave. Glendora, CA 91741-2469 Phone: (626) 963-9311 Fax: (626) 963-4287